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▪ L2: The Magnetohydrodynamic (MHD) description of a plasma

▪ L3: MHD equilibrium configurations of interest for magnetic confinement 

fusion

▪ L4: MHD stability and operational limits

MHD lectures
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▪ MHD stability of the tokamak configuration

• Conceptual examples of instabilities

• Linear stability analysis

▪ Operational limits in tokamak plasmas

Material

▪ See also EPFL MOOC “Plasma physics: Introduction”, module #3g (#3h), 

“Plasma physics: Applications”, #7c

• https://learning.edx.org/course/course-v1:EPFLx+PlasmaIntroductionX+3T2016/home

• https://learning.edx.org/course/course-v1:EPFLx+PlasmaApplicationX+3T2016/home

▪ Wesson, Tokamaks - Third Edition, Ch. 6.1-6.7, 7.1-7.3, 7.7-7.9, 7.18

▪ Zohm, MHD Stability of Tokamaks, Wiley-VCH, Ch. 3.1-3.3, 4.1-4.2

Outline
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Def.: MHD equilibrium ≡ Sum of all forces is zero

➢Necessary, but not sufficient condition for plasma confinement

Def.: Stable MHD equilibrium ≡ Forces resulting from any small 

perturbation are directed to restore equilibrium 

• May allow plasma confinement over longer time scales

Stability of the MHD equilibrium

• Important to understand whether the MHD equilibrium is stable to 

small perturbations

➢Will the plasma configuration survive or ultimately collapse?

➢Will the plasma change its configuration?
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Analogy with classical 
mechanics

marginally stable 

(neutral)
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▪ Z-pinch with axial perturbation in B (kz0, m=0)

Conceptual example: Sausage 
instability of the Z-pinch

Current jz(r)Field B(r)

𝑑

𝑑𝑟
𝑝 𝑟 +

𝐵𝜃
2 𝑟

2𝜇0
+

𝐵𝜃
2 𝑟

𝜇0𝑟
= 0

Perturbation: ∝ exp 𝑖𝑘𝑧𝑧 + 𝑖𝑚𝜃

Complex notation
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▪ Z-pinch with axial perturbation in B (kz0, m=0)

Conceptual example: Sausage 
instability of the Z-pinch

▪ P1: B is stronger than equilibrium 

➢ Magnetic pressure + field line 

tension > plasma pressure

➢ Plasma is compressed in 

phase with the perturbation

▪ P2: B is weaker than equilibrium

➢ Magnetic pressure + field line 

tension < plasma pressure

➢ Plasma expands in phase with 

the perturbation

▪ Net global effect: the plasma is compressed and rarified in phase with the 

perturbation   ➔ sausage instability

Reminder: 𝐵𝜃 𝑟 =
𝜇0𝐼𝑧 𝑟

2𝜋𝑟

Perturbation:  𝜉𝑟 ∝ exp 𝑖𝑘𝑧𝑧

𝑑

𝑑𝑟
𝑝 𝑟 +

𝐵𝜃
2 𝑟

2𝜇0
+

𝐵𝜃
2 𝑟

𝜇0𝑟
= 0
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▪ Z-pinch with azimuthal perturbation in B (kz0, m=1)

Conceptual example: Kink 
instability of the Z-pinch

▪ Field lines are closer in the region 

P1, and more distant in the region P2

➢ P1: B is stronger than the 

equilibrium value

➢ P2: B is weaker than the 

equilibrium value

▪ Net global effect: the perturbed force is in phase with the perturbation

➔ kink instability

Perturbation:  𝜉𝑟 ∝ exp 𝑖𝑘𝑧𝑧 + 𝑖𝑚𝜃

𝑑

𝑑𝑟
𝑝 𝑟 +

𝐵𝜃
2 𝑟

2𝜇0
+

𝐵𝜃
2 𝑟

𝜇0𝑟
= 0
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▪ Add an axial (toroidal) field BZ ➔ screw pinch

▪ Displacement of the kink (or sausage) instability bends field lines ➔

stabilising effect 

Conceptual example: Kink 
instability of the screw pinch

[Figure adapted from J. Freidberg, PP and FE]

➢ Axial (toroidal) field determines maximum axial (toroidal) current
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▪ Curvature of field lines determine response to a ‘bulge’

➢ Convex field lines are prone to interchange (e.g. Z-pinch)

Interchange stability introduces the 
concept of good and bad curvature

- Field line curvature and 

pressure gradient in same 

directions = ‘bad curvature’

➢ Concave field lines resist interchange (e.g. magnetic cusp)

[Figures adapted from J. Freidberg, PP and FE]

- Field line curvature and 

pressure gradient in opposite 

direction = ‘good curvature’
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▪ In the presence of a strong toroidal field (‘tokamak’) toroidal curvature 

dominates the field line geometry

Toroidicity introduces regions of 
‘good’ and ‘bad’ curvature

RC

∇p

Good curvature

RC

∇p

Bad curvature
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▪ Plasma with current ҧ𝑗 and magnetic field ത𝐵

▪ An instability develops that pushes the 

plasma towards a surrounding ideal wall 

(𝜂 = 0)

▪ The magnetic field cannot penetrate into 

the wall

▪ What happens, if the plasma is displaced 

towards the wall? 

Wall effect on MHD instabilities
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▪ As Τ𝑑Φ 𝑑𝑡 = 0 in ideal MHD (see L3), the 

magnetic flux through every surface 

moving with the plasma is constant

▪ A displacement of the plasma towards the 

wall compresses the flux surfaces in the 

vacuum region between the plasma and 

the wall

▪ The magnetic pressure is increased and 

pushes the plasma back

Wall effect on MHD instabilities

➢ Plasmas can be stabilized by a surrounding wall

- However: finite resistivity of the wall allows for flux diffusion through the wall and 

limits this effect to a finite time scale (typically of the order of milliseconds)

➔ Resistive Wall Modes (RWM)
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▪ Fourier (normal mode) analysis of small perturbations

∝ exp 𝑖ത𝑘 ҧ𝑥 − 𝑖𝜔𝑡

General principles for stability 
analysis

➢ Sign of Im() determines stability ➔ Im()>0 corresponds to instability

Complex notation
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▪ Cast MHD equation into equation of motion

𝜌𝑀 Τ𝜕2 ҧ𝜉 𝜕𝑡2 = ത𝐹 ҧ𝜉

where  is a fluid displacement

- Fourier analysis in time ( ҧ𝜉 ∝ 𝑒−𝑖𝜔𝑡) yields an eigenvalue equation

−𝜌𝑀𝜔
2 ҧ𝜉 = ത𝐹 ҧ𝜉

➔ sign(2)=+1/-1 corresponds to stability/instability

▪ Energy principle analysis: evaluate the change in potential energy 

𝛿𝑊 = − Τ1 𝑉׬2
ത𝐹 ҧ𝜉 ∙ ҧ𝜉𝑑𝑉 due to a displacement ҧ𝜉

➔ sign(𝛿𝑊)=+1/-1 corresponds to stability/instability

General principles for stability 
analysis
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▪ Linear stability analysis is a frequently used mathematical technique to 

evaluate the MHD stability of equilibria

1. Linearise all fluid and MHD equations

𝑄 ҧ𝑟, 𝑡 = 𝑄0 ҧ𝑟 + 𝑄1 ҧ𝑟, 𝑡

• 𝑄0 : equilibrium value, i.e. Τ𝜕𝑄0 𝜕𝑡 = 0
• 𝑄1 ≪ 𝑄0 : small perturbation to the equilibrium

• ε = Τ𝑄1 𝑄0 : linear expansion parameter

2. Taylor expand functions of perturbed parameters

3. Use that equilibrium parameters (𝑄0, …) satisfy force balance

4. Keep only terms that are of order 

Linear stability analysis

𝐹 𝑄 = 𝐹 𝑄0 + 𝑄1 = 𝐹 𝑄0 +
𝜕𝐹 𝑄0

𝜕𝑄
𝑄1 +

1

2

𝜕2𝐹 𝑄0

𝜕𝑄2
𝑄1
2 + ….



P
la

s
m

a
 I
I 

–
L
4
 |

 1
4

-M
a
r-

2
0
2

5
20

H
. 
R

e
im

e
rd

e
s

▪ Expand all dependent variables

• ത𝐵 = ത𝐵0 + ത𝐵1,    ҧ𝑗 = ҧ𝑗0 + ҧ𝑗1,   𝑝 = 𝑝0 + 𝑝1,   𝜌 = 𝜌0 + 𝜌1

• Static equilibrium:  ҧ𝑣 = ҧ𝑣1

▪ Unperturbed variables satisfy equilibrium equations

• Force balance: ҧ𝑗0 × ത𝐵0 − 𝛻𝑝0 = 0

• Ampere’s law: 𝛻 × ത𝐵0 = 𝜇0 ҧ𝑗0

• Gauss’s law: 𝛻 ത𝐵0 = 0

▪ Linearise equations

Apply linear stability analysis to ideal 
MHD equations
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▪ Force balance:   𝜌
𝜕ത𝑣

𝜕𝑡
= ҧ𝑗 × ത𝐵 − 𝛻𝑝

Ex.: Linearise force balance 
equation
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▪ Expand all dependent variables

• ത𝐵 = ത𝐵0 + ത𝐵1,   ҧ𝑗 = ҧ𝑗0 + ҧ𝑗1,   𝑝 = 𝑝0 + 𝑝1,   𝜌 = 𝜌0 + 𝜌1
• Static equilibrium:  ҧ𝑣 = ҧ𝑣1

▪ Equilibrium equations

• Force balance: ҧ𝑗0 × ത𝐵0 − 𝛻𝑝0 = 0

• Ampere’s law: 𝛻 × ത𝐵0 = 𝜇0 ҧ𝑗0
• Gauss’s law:  𝛻 ത𝐵0 = 0

▪ Linearise equations, e.g. force balance

▪ Assume same time dependence for all perturbed quantities

𝑄1 ∝ 𝑒𝑥𝑝 −𝑖𝜔𝑡 (normal mode expansion)

Apply linear stability analysis to 
ideal MHD equations

𝜌0
𝜕 ҧ𝑣1
𝜕𝑡

= ҧ𝑗0 × ത𝐵1 + ҧ𝑗1 × ത𝐵0 − 𝛻𝑝1
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▪ Introduce fluid displacement   ҧ𝜉 ҧ𝑥, 𝑡

➢ Force balance equation

with a force operator

Apply linear stability analysis to 
ideal MHD equations

ത𝐹 ҧ𝜉 = ҧ𝑗0 × ത𝐵1 + ҧ𝑗1 × ത𝐵0 − 𝛻𝑝1

⇒
𝜕 ҧ𝜉 ҧ𝑥, 𝑡

𝜕𝑡
= ҧ𝑣1 ҧ𝑥, 𝑡

𝜌0
𝜕2 ҧ𝜉 ҧ𝑥, 𝑡

𝜕𝑡2
= ത𝐹 ҧ𝜉 ҧ𝑥, 𝑡 = −𝜔2𝜌0 ҧ𝜉 ҧ𝑥, 𝑡

=
1

𝜇0
𝛻 × ത𝐵0 × ത𝐵1 +

1

𝜇0
𝛻 × ത𝐵1 × ത𝐵0 − 𝛻𝑝1

After using Ampère’s law
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▪ Perturbed field ത𝐵1:  Combine Faraday and Ohm’s law

▪ Perturbed pressure 𝑝1:  Combine adiabatic equation of state and 

continuity

Perturbed field and perturbed 
pressure depend on displacement

𝜕 ത𝐵1
𝜕𝑡

= 𝛻 × ത𝐸1 = 𝛻 × ҧ𝑣1 × ത𝐵0 → ത𝐵1 = 𝛻 × ҧ𝜉 × ത𝐵0

𝜕𝑝1
𝜕𝑡

= −𝑝0𝛾∇ ∙ ҧ𝑣1 − ҧ𝑣1 ∙ ∇𝑝0 → 𝑝1 = −𝑝0𝛾∇ ∙ ҧ𝜉 − ҧ𝜉 ∙ ∇𝑝0
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▪ Introduce fluid displacement   ҧ𝜉 ҧ𝑥, 𝑡

➢ Force balance equation

with a force operator (after using Ampère’s law)

▪ Ideal MHD force operator ത𝐹 ҧ𝜉 is self-adjoint, i.e. satisfies the property 

׬ ҧ𝜂∗ ത𝐹 ҧ𝜉 𝑑 ҧ𝑟 = ׬ ҧ𝜉∗ ത𝐹 ҧ𝜂 𝑑 ҧ𝑟 ➔ Eigenvalues 𝜔2 of ത𝐹 ҧ𝜉 are real

Apply linear stability analysis to 
ideal MHD equations

ത𝐹 ҧ𝜉 =
1

𝜇0
𝛻 × ത𝐵0 × ത𝐵1 +

1

𝜇0
𝛻 × ത𝐵1 × ത𝐵0 − 𝛻𝑝1

⇒
𝜕 ҧ𝜉 ҧ𝑥, 𝑡

𝜕𝑡
= ҧ𝑣1 ҧ𝑥, 𝑡

𝜌0
𝜕2 ҧ𝜉 ҧ𝑥, 𝑡

𝜕𝑡2
= ത𝐹 ҧ𝜉 ҧ𝑥, 𝑡 = −𝜔2𝜌0 ҧ𝜉 ҧ𝑥, 𝑡
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▪ MHD energy principle: work done by moving the plasma through a fluid 

distance element 

MHD equilibrium: linear stability 
analysis

𝛿𝑊 = −
1

2
න ത𝐹 ҧ𝜉 ∙ ҧ𝜉 𝑑𝑉

=
1

2
න 𝛾𝑝0 𝛻 ∙ ҧ𝜉

2
+ ҧ𝜉 ∙ 𝛻𝑝0 𝛻 ∙ ҧ𝜉 +

ത𝐵1
2

𝜇0
+ ҧ𝑗0 ∙ ҧ𝜉 × ത𝐵1 𝑑𝑉 +

1

2
න 𝑝1 +

ത𝐵0 ∙ ത𝐵1
𝜇0

ҧ𝜉 ∙ 𝑑 ҧ𝑆

always>0

stabilising

depends
➔ pressure 

driven modes

always>0

stabilising

depends
➔ current 

driven modes

depends
➔ role of the wall 

enclosing the plasma

➢ Sign of W determines stability of the system

+න
vac

𝐵𝑣
2

2𝜇0
𝑑𝑉or
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▪ Circular, large aspect ratio, low- 𝛽 tokamak

• Large aspect ratio: 𝐵𝜙 , 𝑅 ∼ 𝑐𝑜𝑛𝑠𝑡. (→ 𝑞 = 𝑟𝐵𝜙/ 𝑅𝐵𝜃 )

• Low 𝛽: 𝑝0 ∼ 0 (consider only current-driven modes)

Example: Current-driven modes

𝛿𝑊 =
𝜋2𝐵𝜙

2

𝜇0𝑅
ቐන

0

𝑎

𝑟
𝑑𝜉

𝑑𝑟

2

+ 𝑚2 − 1 𝜉2
𝑛

𝑚
−
1

𝑞

2

𝑟𝑑𝑟

+ ൡ
2

𝑞𝑎

𝑛

𝑚
−

1

𝑞𝑎
+ 1 + 𝑚𝜆

𝑛

𝑚
−

1

𝑞𝑎

2

𝑎2𝜉𝑎
2

▪ Use normal mode test function 𝜉 ∝ 𝑒𝑖 𝑚𝜃−𝑛𝜙

𝛿𝑊 = 𝜋𝑅න
0

𝑎 ത𝐵1
2

𝜇0
+ 𝑗𝜙0 𝐵𝑟1𝜉𝜃 − 𝐵𝜃1𝜉𝑟 𝑑𝜃𝑟𝑑𝑟 + 2𝜋න

a

𝑏 𝐵𝑣
2

2𝜇0
𝑑𝜃𝑟𝑑𝑟
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▪ Inspect (potential) energy functional

Example: Current-driven modes (cont.)

𝛿𝑊 =
𝜋2𝐵𝜙

2

𝜇0𝑅
ቐන

0

𝑎

𝑟
𝑑𝜉

𝑑𝑟

2

+ 𝑚2 − 1 𝜉2
𝑛

𝑚
−
1

𝑞

2

𝑟𝑑𝑟

+ ൡ
2

𝑞𝑎

𝑛

𝑚
−

1

𝑞𝑎
+ 1 +𝑚𝜆

𝑛

𝑚
−

1

𝑞𝑎

2

𝑎2𝜉𝑎
2

▪ Plasma contribution least stable for 𝑚 = 1 ٿ 𝜉 = 𝑐𝑜𝑛𝑠𝑡. when 

𝛿𝑊plasma=0 

• Ideal wall at 𝑟 = 𝑎 → 𝜉𝑎 = 0 → need to go to higher order expansion of 

𝛿𝑊plasma (internal kink mode)

• 𝜉𝑎 ≠ 0 → 𝛿𝑊vacuum determines stability. Assume no wall (𝜆 = 1): 𝑞𝑎 >
1

𝑛
for stability
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▪ Inspect (potential) energy functional

Example: Current-driven modes (cont.)

𝛿𝑊 =
𝜋2𝐵𝜙

2

𝜇0𝑅
ቐන

0

𝑎

𝑟
𝑑𝜉

𝑑𝑟

2

+ 𝑚2 − 1 𝜉2
𝑛

𝑚
−
1

𝑞

2

𝑟𝑑𝑟

+ ൡ
2

𝑞𝑎

𝑛

𝑚
−

1

𝑞𝑎
+ 1 +𝑚𝜆

𝑛

𝑚
−

1

𝑞𝑎

2

𝑎2𝜉𝑎
2

▪ All modes with 
𝑚

𝑛
< 𝑞𝑎 stable for any wall position 

➢ For plasmas where 𝑞 increases with 𝑟, current driven 

modes with resonant surface inside the plasma are stable
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▪ Main class of instabilities: sausage (interchange), kink, tearing

• Wall surrounding the plasma can be stabilizing because of the frozen-in flux 
condition in ideal MHD

▪ Mathematical approach: linearise fluid and Maxwell’s equations

➢ Eigenvalue analysis to determine stability

➢ Energy principle to determine stability 

Stability of the MHD equilibrium: 
summary
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▪ MHD stability of the tokamak configuration

• Conceptual examples of instabilities

• Linear stability analysis

• Waves in ideal MHD

▪ Operational limits in tokamak plasmas

Outline
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▪ Fusion performance (see L1)
• To produce thermonuclear fusion in magnetically confined plasmas we need 

nE~1020m-3s for T≥10keV

• For thermonuclear fusion to be economically attractive we need an 
engineering fusion energy gain in the range 2QE10 (see L1 notes)

• This corresponds to a physics fusion energy gain in the range 10Q40

▪ Operational limits: What limits the attainable Q?

Performance and operational limits 
of modern fusion devices
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▪ Break-even: a sufficient 𝑛𝑇𝜏E has to be reached at 𝑇 ≥ 10𝑘𝑒𝑉

▪ Energy confinement time increases with current (see L5) ➔ 𝜏E ∝ 𝐼P

▪ Fusion power increases with plasma pressure ➔ 𝑃fus ∝ 𝑛𝑇 2 ∝ 𝛽2 (for 5keV 

< T < 15keV)

▪ Ip, n, and p are limited by different mechanisms: operational limits

▪ Approaching operational limits leads to disruptions (hard limit), or confinement 

degradation (soft limit)

▪ How to build an economically viable fusion reactor?

• Fix B as high as possible ➔ then maximise {𝐼P, n, 𝛽} to minimise V (as cost
 size)

➔ The maximum values of {𝐼P, n, 𝛽} are all limited by MHD instabilities!

Fusion performance and 
operational limits
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▪ Toroidal field has to be sufficiently large to suppress the kink instability 

driven by the poloidal field 

• Ratio of toroidal and poloidal field expressed by the safety factor

𝑞𝑎 =
𝑎𝐵𝜙,0

𝑅0𝐵𝜃,𝑎
=

2𝜋𝑎2𝐵𝜙,0

𝜇0𝑅0𝐼𝑃
(for a circular cylindrical plasma)

Operational limit: plasma current

▪ Stability requires qa ≥ 2

[Figure from J. Wesson, The Science of JET (2000)]

Increase 𝐼𝑃

Increase 𝑛𝑒

Discharge trajectories
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▪ Hugill’s diagram for safe operation

• A: Minimum safety factor qa>2 required to avoid current-driven kink instability

• B: Minimum density required to avoid generation of runaway electrons

Operational limits: Hugill’s diagram

• C: Maximum density increases 

with plasma current 

(Greenwald limit)

▪ Operation beyond limits of the 

Hugill’s diagram 

➔ disruptions
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▪ Greenwald density limit: the maximum achievable density depends on 

plasma current and plasma size

Operational limits: plasma density

➔ 𝑛 ≤ 𝑛G = Τ𝐼P 𝜋𝑎2

- With nG in 1020m-3, Ip in MA and 

a in m

- Exceeding the Greenwald 

density limit typically leads to 

disruption
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▪ Troyon limit: limit of normalized plasma pressure β due to global ideal 

MHD kink mode scales as 𝛽max = 𝐶𝛽 Τ𝐼P 𝑎𝐵0

Operational limits: (normalized) 
plasma pressure

- Cβ~2→5  when optimizing plasma shaping

▪ Definition of normalized beta 𝛽N ≡
𝛽

Τ𝐼P 𝑎𝐵0

- With  in %, a in m, B in T and Ip in MA
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▪ Troyon limit: limit of normalized plasma pressure β due to global ideal 

MHD kink mode scales as 𝛽max = 𝐶𝛽 Τ𝐼P 𝑎𝐵0

Operational limits: (normalized) 
plasma pressure

- Cβ~2→5  when optimizing plasma shaping

▪ Definition of normalized beta 𝛽N ≡
𝛽

Τ𝐼P 𝑎𝐵0

- With  in %, a in m, B in T and Ip in MA

▪ In practice β-limit usually set by resistive 

MHD instabilities in the vicinity of ideal 

MHD limit
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▪ Current limit: plasma current limited by minimum safety factor qa≥2 to avoid 

current driven kink mode
• Plasma current Ip exceeds safety factor limit  ➔ disruption

▪ Greenwald limit: maximum achievable density 𝑛max ≤ 𝑛G with Greenwald 

density 𝑛G = Τ𝐼P 𝜋𝑎2 [ Τ1020 𝑚3, 𝑀𝐴,𝑚]
• Exceeding the Greenwald limit  ➔ disruption

▪ Troyon limit: maximum achievable 𝛽 scales as 𝛽max = 𝐶𝛽 Τ𝐼P 𝑎𝐵0 [%,MA,m, T]

• Cβ~2→5  when optimizing plasma shaping

• Exceeding the Troyon-limit  ➔ disruption

▪ Disruption: an exceptionally rapid Ip quench in tokamaks

• Plasma energy fully lost in ~1ms, several GWs dumped onto reactor wall  
➔ serious damage!

Operational limits: summary
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▪ Disruptions: exceptionally rapid loss of the plasma in tokamaks
• Note: stellarators in principle disruptions-free

▪ Plasma energy lost in ~1ms and several GWs (e.g. in JET) dumped 

onto device’s wall

Operational limits: disruption

JET

[Figure from J. Wesson, The Science of JET (2000)]
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▪ Phase 1: Precursor growth 
• Instability growth may already degrade 

confinement (typical ~10ms)

▪ Phase 2: Thermal quench

• Rapid loss of the kinetic plasma 
energy (typical ~1ms) to limiting 
surfaces (~10MJ in JET)

• Cooling flattens current profile and 
induces a current spike

▪ Phase 3: Current quench

• Magnetic energy is dissipated through 
impurity radiation and eddy currents in 
the vessel wall

Operational limits: disruption

[ITER Physics Basis, Chapter 3 (1999), Fig. 52]

Locked mode disruption in the JET tokamak
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▪ Disruptions: may cause damage to plasma 

facing components

▪ Melting: metals melt and carbons sublimate 

when the heat flux exceeds the limits of the 

materials

▪ ITER: only ~5 very minor disruptions allowed 

over its entire ~30yrs life-time!

Operational limits and MHD 
instabilities: disruption
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▪ Fusion performance: scales as 𝑃fus ∝ 𝛽2 for the typical operating range of 

{density, temperature}

• Ip, n, and p are of outmost importance for optimizing a reactor

• These parameters are constrained within limited operational range described by 

theoretical and empirical scaling laws

▪ Operational limits: affect maximum {n, 𝛽, 𝐼P} values that can be achieved in the 

optimal temperature range for fusion

▪ Approaching operational limits may lead to disruptions (hard limit) or 

confinement degradation (soft limit)

▪ Passive control of instabilities: use intrinsic stabilization mechanisms, e.g. by the 

wall surrounding the plasma

▪ Active control: detect the onset of  an instability, and apply feedback control 

schemes in real-time to stabilize the instability or limit its development

Fusion performance, operational 
limits: summary
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Additional material
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▪ Various classification schemes exist

▪ Internal and external modes

• Does the plasma surface (have to) move as the instability grows?

▪ Only external modes can benefit from wall stabilisation (distinguish no-wall 
and conducting wall modes)

▪ Internal modes typically do not lead to catastrophic loss of plasma

▪ Pressure-driven and current-driven modes

• Pressure driven modes include modes driven by perpendicular current 
(combination of pressure gradient and curvature radius)

• Pressure-driven modes may be ‘interchange’ or ‘ballooning’

• Current driven modes may even exist at low beta and are also called “kink-
modes”

Classification of instabilities
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▪ Safety factor: Average number of toroidal 

turns per poloidal turn of a field line

Safety factor – large aspect ratio, 
elliptical cross section

- Link flux surface averaged B to 

enclosed current I(r)

- Dependence of safety factor on 

plasma current

Unwrap
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